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Information theoretic approach to quantify complete and phase synchronization of chaos
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Department of Physics, Saratov State University, Astrakhanskaya 83, Saratov, Russia

~Received 29 August 2001; published 20 May 2002!

Based on an information theory approach we suggest a quantitative characteristic for evaluating the degree
of chaotic synchronization. The proposed characteristic is tested for the cases of complete and phase synchro-
nization of chaos. It is shown that this characteristic is stable with respect to the influence of small noise and
nonlinear signal distortion.
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I. INTRODUCTION

Recently investigation of interacting complex systems
been the focus of attention of much research. The interac
behavior that is often called ‘‘chaotic synchronization’’ refe
to a number of different phenomena such as a transitio
completely identical oscillations in coupled subsyste
~complete synchronization of chaos@1,2#!, basic frequency
locking ~frequency synchronization@3#!, instantaneous phas
locking ~phase synchronization@4#!, a deterministic relation-
ship between the dynamics of oscillators~lag synchroniza-
tion @5# and generalized synchronization@6#!. For each phe-
nomenon listed, one can separate cases of full and pa
synchronization. To gain a better understanding of the co
lation between different types of chaotic synchronization
would be useful to introduce a quantity for measuring
degree of interdependence between the motions of
systems. In our opinion, this quantity must satisfy the follo
ing necessary requirements.

~1! It must be universal in order to be applied to differe
types of behavior of interacting oscillators. It has to give t
possibility to compare different stages of the particular ty
of synchronization as well as different types of synchroni
tion with each other.

~2! It must represent a normalized quantity from 0 f
unsynchronized oscillations to 1 for fully synchronized on

~3! It must have a clear physical meaning that can fac
tate the interpretation of obtained results.

~4! This quantity must be independent of a particular ty
of the dynamical system, thus, allowing us to determine
degree of synchronization by using the time series of os
lations in the subsystems.

In Ref. @7# we suggested a synchronization measure,
was introduced on the basis of the coherence function,
tested it on an example of complete synchronization loss
system of two coupled chaotic self-sustained oscillators.
phase coherence was used as a chaotic synchronization
sure in Ref.@8#, where the authors applied the instantaneo
phase approach.

In this work we consider another approach for constru
ing the chaotic synchronization measure and use the in
mation quantity function. We apply this approach to the c
of unidirectional coupling between oscillators when one
them can be considered as a transmitter of a chaotic si
and the other one as a receiver. In the framework of
approach we assume that the degree of synchronization
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be represented by the amount of information provided
knowledge of the state of the transmitter to determine
state of the receiver. If the state of one oscillator uniqu
determines the state of another, we can speak on full s
chronization of chaos. Hence, when states of interacting s
systems are connected through a deterministic func
~similarly to the definition of generalized synchronization!,
the level of synchronization is equal to 1. On the other ha
if the state of the transmitter does not influence the state
the receiver, we can conclude that the oscillators are uns
chronized~zero degree of synchronization!. In certain cases
the correlation between states of the oscillators has two c
ponents, deterministic and random. This refers to partial s
chronization of chaos when the degree of synchronizatio
between 0 and 1.

We introduce the following quantitative characteristic
synchronization:

m5
Sy2Syux

Sy
, ~1!

whereSy is the information entropy that is calculated on t
distribution of states of the synchronized oscillator,Syux is
the conditional entropy computed when the state of the s
chronizing oscillator is fixed at a certain value ofx. This
approach is based on methods of symbolic analysis@9–11#. A
series of works have demonstrated that the methods of s
bolic dynamics can be used to reveal a similarity of comp
signals. In Ref.@10# the conditional entropy built on a sym
bolic sequence was applied to identify chaotic signals.
Ref. @11# the authors use the mutual information to obse
synchronization in unidirectionally coupled Lorenz an
Rossler systems and to study the electrical activity in hum
brains.

In this work we apply the chaos synchronization to me
sure two qualitatively different types of chaotic synchroniz
tion. In the first case we consider the process of destruc
of complete chaotic synchronization in a system of two u
directionally coupled logistic maps. The second case is c
cerned with the phase locking process in the Rossler sys
driven by an external harmonic force.

II. ESTIMATION OF THE DEGREE OF CHAOTIC
SYNCHRONIZATION IN A SYSTEM OF COUPLED

LOGISTIC MAPS

In this section we consider the case of breaking of co
plete synchronization of chaos in a system of maps w
master-slave coupling,
©2002 The American Physical Society15-1
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xn115lxn~12xn!, ~2!

yn115l@yn1g~xn2yn!#$12@yn1g~xn2yn!#%, ~3!

where xn , yn are dynamical variables,l is the system pa-
rameter, andg is the coupling strength. Ifg50, the oscilla-
tors are uncoupled. Equations~2! and ~3! describe the drive
and response systems, respectively. This type of coupling
been considered in detail in Ref.@12#. In a certain interval of
the coupling parameter, the system exhibits a phenomeno
complete synchronization of chaos, which manifests itsel
identical oscillations of the subsystems, i.e.,xn5yn . In the
region of chaos, for each value ofl there is a critical value
of the coupling below which complete synchronization
broken. The breaking of synchronization is accompanied
a bubbling phenomenon followed by the blowout bifurcati
@13#, which is resulted in asynchronous chaotic oscillatio
The system dynamics and mechanisms of synchronizatio
it were described in Ref.@12#. We study the behavior of the
system~2! and ~3! depending on the coupling parameterg
and for fixedl53.8. The chosen value ofl corresponds to
the regime of developed chaos represented by a one-
chaotic attractor. In the region 0.38,g,1 we observe a ro-
bust regime of complete synchronization. As the coupl
parameter decreases, 0.35,g,0.38, the synchronization o
chaos is no longer robust. Synchronous oscillations can
observed after a long transient process only in the sys
without noise. The addition of an arbitrary small noise lea
to the bubbling behavior. The time seriesx-y represents long
intervals of the synchronous behavior that are intermitted
random turbulent bursts, when the trajectory goes away f
the symmetric subspace. This behavior is illustrated in F
1~a! and 1~b! where the phase portraits of the attractor a
shown both without noise@Fig. 1~a!# and in the presence o
small noise@Fig. 1~b!#. As the coupling parameter decreas
further, the transversal Lyapunov exponent becomes pos
at g50.35. This leads to the blowout bifurcation after whi
the chaotic synchronization is no longer observed in the s
tem. With decreasing coupling the attractor ‘‘inflates’’ and
g,0.05 the phase portrait looks like a square region@Fig.
1~c!#.

We use the proposed characteristicm for evaluating the
destruction of complete synchronization. Figure 2 show
dependence of the degree of synchronization on the coup
in the system~2! and~3! without noise and in the presence
small noise added. In the noiseless system, the sharp d
of the synchronization degree begins immediately at
point where the transversal Lyapunov exponent change
sign. For illustration we plot the transversal Lyapunov exp
nent as a function of the coupling parameter and two do
lines ~horizontal and vertical! the crossing of which indicate
the point where the exponent passes through its zero valu
is seen that the degree of synchronization sharply drops f
m51 atg>0.35 tom.0.15 atg50.3. Then, as parameterg
decreases further, the degree of synchronization slowly
creases tom.0.05 atg50.2. This region corresponds to th
bubbling phenomenon. The local increase ofm at g;0.15 is
related to a more regular structure of the attractor represe
in Fig. 1~d!. After this the degree of synchronization tends
05621
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zero at zero coupling. In the presence of small no
(;0.000 01) a rapid decrease in the synchronization deg
begins significantly earlier~with respect to the coupling! as
indicated by dot-dashed curve in Fig. 2. This process g
more gradually than that in the noiseless system. A sign
cant difference in the degrees of synchronization for the s
tem with and without noise is observed only in this region

FIG. 1. Breaking of complete chaotic synchronization in t
system~2! and ~3! for different coupling strength: bubbling phe
nomenon forg50.36 without noise~a! and in the presence of wea
noise~intensity;0.000 01)~b!; unsynchronous chaos forg50.05
~c! and partial regularization of oscillations atg50.14 ~d!.

FIG. 2. Dependences of the degree of chaotic synchronizatiom
~dash-dotted and solid curves for noisy and noiseless systems
spectively, and symbols ‘‘h ’’ and ‘‘ s ’’ for the system with signal
distortions! and the transversal Lyapunov exponent on the coup
for the master-slave system.
5-2
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FIG. 3. ~a! Dependence of the degree of pha
chaotic synchronizationm on the external force
frequencyV at A50.5, and~b! the power spec-
trum of the autonomous Rossler system.
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to g.0.34. This difference indicates the bubbling proce
caused by external noise. In other regions of the coup
parameter the values ofm are practically the same in bot
cases~Fig. 2!. Thus, the degree of synchronization is sign
cantly affected by noise only in regions where chaos s
chronization is nonrobust.

The proposed characteristic of synchronization is sta
not only to a weak noise but to a small nonlinear distort
of signals. To illustrate this statement, we modify the tim
series that is used to calculate the degree of synchroniza
by adding a nonlinear term

y→y1dy2,

whered is a small parameter. The results of calculations
the modified realizations withd50.05 andd50.2 are shown
in Fig. 2 ~they are indicated by circles and squares, resp
tively!. As it is seen, the degree of synchronization found
the changed signal does not practically differ from the init
undistorted case. The invariance with respect to nonlin
distortions enables us to apply the proposed characterist
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the study of generalized synchronization of chaos whenyn
5 f (xn) with f being a deterministic function.

Our investigations have demonstrated that the propo
measure of quantity of synchronization is sensitive to bre
ing of complete chaotic synchronization. The degree of s
chronization is exactly equal to 1 in the case of totally sy
chronized oscillators and it is close to 0 when oscillations
unsynchronous at a very small coupling. This quantity
stable with respect to the influence of weak noise~except the
region with bubbling behavior! and nonlinear distortion of
the signal being studied.

III. EVALUATING THE DEGREE OF PHASE
SYNCHRONIZATION OF CHAOS

The phenomenon of phase synchronization is another
of chaotic synchronization that attracts the interest of ma
researchers and has a great fundamental and applied si
cance. We test our method on a well-known system that d
onstrates phase synchronization of chaos: the Rossler o
5-3
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lator with an external harmonic force:

ẋ52y2z1AcosVt,

ẏ5x1ay, ~4!

ż5b1z~x2c!.

Herex,y,z are dynamical variables,a, b, andc are control-
ling parameters,A and V are the amplitude and the fre
quency of the external force, respectively. We have chose
chaotic regime and fixed the parameters as followsa

FIG. 4. Dependence of the degree of phase chaotic synch
zationm onV for the Rossler system~a! 1.0060,V,1.0689~main
resonanceV'v0), ~b! 0.5174,V,0.5188~resonance 2V'v0),
~c! 2.0625,V,2.0801~resonanceV'2v0).
05621
a

50.15,b50.15,c510. For certain values of the force ampl
tude and frequency the system~4! demonstrates the phenom
enon of phase synchronization between the chaotic dynam
of the oscillator and the periodic external force@14–16#.

The phase synchronization is defined as locking of
instantaneous phase of oscillations of the synchronized
tem by the phase of the external force. The condition for f
phase synchronization on the basic frequency reads

uf12f2u<const. ~5!

In this case the basic frequency in the spectrum of the s
ied signal and the frequency of the external force are clos
each other. In the case of synchronization on subharmo
this condition is as follows:

unf12mf2u<const. ~6!

In expressions~5! and ~6! f1 and f2 are the instantaneou
phases, andn and m are integer numbers. In the case
partial phase synchronization both conditions~5! and~6! are
no longer valid and the phase difference of the phases te
to infinity with time. Nevertheless, in this case the pha
locking exists during very long time intervals between whi
rapid skips of the phase difference are observed.

We investigate the system~4! in a wide region of the
external force frequency forA50.5. Figure 3~a! demon-
strates the dependence of the synchronization degreem on

ni-

FIG. 5. Phase portraits of the system~4!: ~a! V51.061, A
50.5, ~b! V51.036,A50.5.

FIG. 6. Temporal dependences of the phase differencewR

2wHarm) for A50.5, and~i! V51.0264, ~ii ! V51.071, ~iii ! V
51.082.
5-4
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nance character with several peaks. The maximal peak
responds to the main resonance, which is located on the b
frequencyv051.061 in the spectrum of the Rossler oscill
tor @Fig. 3~b!#. This peak indicates the region of phase sy
chronization(1:1) wheren5m51 @see Eq.~6!#. Figure 4~a!
shows this region in a larger scale. The frequency inter
corresponding to the full phase synchronization (1.00
,V,1.0689) is bounded by the dotted lines. The larg
value of the degree of synchronization ism50.519 while the
minimal value is about 0.15. The value of the synchroni
tion degree depends on an oscillatory regime in the sys
~4! and it is significantly larger for more regular oscillation
in the windows of periodicity. For example, the sharp peak
m at frequencyV51.061 refers to the period -16 limit cycl
@Fig. 5~a!#. This peak is observed near the local maximu
m50.34 at the basic frequencyV5v0. The other values of
m in this region belong to the interval@0.15;0.34# and are
related to chaotic synchronous oscillations@Fig. 5~b!#.

Depending on the frequency of the external force the
cillations in the system can be totally synchronized@curve~i!
in Fig. 6#, partially synchronized@curve ~ii !#, or unsynchro-
nized @curve ~iii !#. Starting from the region of partial phas
synchronization we observe that when the system param
changes in one direction, the time intervals of phase lock
are gradually increased to infinity, while they are gradua
decreased to zero as the parameter is varied in the opp
direction. This leads to a gradual change of the degree
synchronization from the values in the interval 0.15,m
,0.34 for totally synchronized oscillations to 0.01,m
,0.15 for partially synchronized and then to almost ze
value for unsynchronized ones.

The other peaks presented in Fig. 3~a! reflect synchroni-
zation on harmonics. For example, Fig. 4~b! represents a
peak of synchronization at 1:2 when the conditionuf1
22f2u<const is fulfilled. Figure 4~c! relates to the case o
synchronization at2:1. Each peak in Fig. 3 corresponds
phase synchronization with a certain rational number. Hig
resonances have smaller synchronization levels and narr
regions of synchronization than the main resonance.
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Comparing complete and phase synchronization of ch
we find that the first case is characterized by a significan
larger degree of synchronization. This is obvious since co
plete synchronization means correlations between amplitu
and phases of signals whereas phase synchronization
into account only phase dynamics. Hence, full phase s
chronization is characterized by the synchronization deg
being significantly less than 1. From this point of view, w
can consider phase synchronization as an example of
tially synchronous oscillations.

IV. CONCLUSION

We have proposed the characteristic of chaotic synchr
zation that can be applied to different types of synchron
behavior. We have tested it on examples of complete
phase synchronization of chaos. In the first case the degre
synchronization is exactly equal to 1 for totally synchroniz
oscillations and is reduced when synchronization is brok
In the bubbling region the degrees of synchronization wi
out and in the presence of small noise are very different. T
behavior reflects a nonrobust~or ‘‘weak’’ ! character of syn-
chronization. In the other parameter regions weak noise d
not practically influence on the degree of synchronizati
We have demonstrated that its value is also invariant t
small distortion of the signal.

In the case of phase synchronization the suggested m
sure indicates regions of synchronization with different rat
nal numbers. The degree of synchronization is significan
less than that for complete synchronization. It depends
which kind of an oscillatory regime is observed in the osc
lator. Higher resonances have smaller levels of synchron
tion than the main one.
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