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Information theoretic approach to quantify complete and phase synchronization of chaos
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Based on an information theory approach we suggest a quantitative characteristic for evaluating the degree
of chaotic synchronization. The proposed characteristic is tested for the cases of complete and phase synchro-
nization of chaos. It is shown that this characteristic is stable with respect to the influence of small noise and
nonlinear signal distortion.
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[. INTRODUCTION be represented by the amount of information provided by

knowledge of the state of the transmitter to determine the

Recently investigation of interacting complex systems hastate of the receiver. If the state of one oscillator uniquely
been the focus of attention of much research. The interactingétermines the state of another, we can speak on full syn-
behavior that is often called “chaotic synchronization” refers chronization of chaos. Hence, when states of interacting sub-
to a number of different phenomena such as a transition t ystems are connected through a deterministic function

: : g - similarly to the definition of generalized synchronizajion
completely identical oscillations in coupled subsystems A
(complete synchronization of chas,2]), basic frequency the level of synchronization is equal to 1. On the other hand,
. o ; if the state of the transmitter does not influence the state of
locking (frequency synchronizatidi8]), instantaneous phase

locki h hronizatid]), a deterministic relati the receiver, we can conclude that the oscillators are unsyn-
ocking (phase sync roniza icled]), a geterministic retation- chronized(zero degree of synchronizatiprin certain cases
ship between the dynamics of oscillatdtag synchroniza-

. : o the correlation between states of the oscillators has two com-
tion [5] and generalized synchronizatif@]). For each phe-  honents, deterministic and random. This refers to partial syn-

nomenon listed, one can separate cases of full and partighronization of chaos when the degree of synchronization is
synchronization. To gain a better understanding of the correnetyween 0 and 1.

lation between different types of chaotic synchronization it e introduce the following quantitative characteristic of
would be useful to introduce a quantity for measuring thesynchronization:

degree of interdependence between the motions of sub-

systems. In our opinion, this quantity must satisfy the follow- _ Sy~ Syix )

ing necessary requirements. ® S

(1) It must be universal in order to be applied to different h is the inf . hat | lculated h
types of behavior of interacting oscillators. It has to give the'"N€reSy is the information entropy that is calculated on the

I ; : distribution of states of the synchronized oscillat8y, is
possibility to compare different stages of the particular type o fx i
of synchronization as well as different types of synchroniza-the cqn_dltlonal_entropy c_omputed when _the state of th_e syn
. . chronizing oscillator is fixed at a certain value xf This
tion with each other.

. . approach is based on methods of symbolic analgsid 1]. A

(2) It mu§t repregen_t a normalized quantity frpm 0 forsgﬁes of works have demonstratedythat the mebtgk?:)ds of sym-
unsynchronized oscillations to 1_for fully synchromzed ONeSyolic dynamics can be used to reveal a similarity of complex

(3) It must have a clear physical meaning that can facili-gjgnals. In Ref[10] the conditional entropy built on a sym-
tate the interpretation of obtained results. _ bolic sequence was applied to identify chaotic signals. In

(4) This quantity must be independent of a particular typeref. [11] the authors use the mutual information to observe
of the dynamical system, thus, allowing us to determine theynchronization in unidirectionally coupled Lorenz and
degree of synchronization by using the time series of oscilRossler systems and to study the electrical activity in human
lations in the subsystems. brains.

In Ref. [7] we suggested a synchronization measure, that In this work we apply the chaos synchronization to mea-
was introduced on the basis of the coherence function, ansure two qualitatively different types of chaotic synchroniza-
tested it on an example of complete synchronization loss in &on. In the first case we consider the process of destruction
system of two coupled chaotic self-sustained oscillators. Thef complete chaotic synchronization in a system of two uni-
phase coherence was used as a chaotic synchronization mélrectionally coupled logistic maps. The second case is con-
sure in Ref[8], where the authors applied the instantaneougerned with the phase locking process in the Rossler system
phase approach. driven by an external harmonic force.

In this work we consider another approach for construct-
ing the chaotic synchronization measure and use the infor-
mation quantity function. We apply this approach to the case
of unidirectional coupling between oscillators when one of
them can be considered as a transmitter of a chaotic signal In this section we consider the case of breaking of com-
and the other one as a receiver. In the framework of thigplete synchronization of chaos in a system of maps with
approach we assume that the degree of synchronization camaster-slave coupling,

Il. ESTIMATION OF THE DEGREE OF CHAOQOTIC
SYNCHRONIZATION IN A SYSTEM OF COUPLED
LOGISTIC MAPS
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Xnr1=AXp(1—Xp), 2 (a)
[ T | 1

Ynr1= M Ynt ¥Xn=Yo) H1=[Yn+ ¥(Xa=yn) 1} (3) 0.8 . i 0.8 .
wherex,, Yy, are dynamical variables, is the system pa- 0.6_— - 0.6-—
rameter, andy is the coupling strength. =0, the oscilla- ¥ 1 Y 7
tors are uncoupled. Equatiof®) and (3) describe the drive [ ] 04r
and response systems, respectively. This type of coupling ha ¢, | i 02k
been considered in detail in R¢l.2]. In a certain interval of

1 1 1 1 L 0 L 1 1 1 1

the coupling parameter, the system exh_ibits a phenomenon ¢ 9% 0z 0z 05 08 1 0 02 04 06 08 1
complete synchronization of chaos, which manifests itself in x x

identical oscillations of the subsystems, ix,=y,. In the
region of chaos, for each value Bfthere is a critical value

)

of the coupling below which complete synchronization is 1_

broken. The breaking of synchronization is accompanied by o8| 08 |

a bubbling phenomenon followed by the blowout bifurcation r

[13], which is resulted in asynchronous chaotic oscillations. , ¢ [ , 0T

The system dynamics and mechanisms of synchronization ir o4 [ 04 -

it were described in Refl12]. We study the behavior of the L

system(2) and (3) depending on the coupling parameter 0z 021

and for fixed\ = 3.8. The chosen value of corresponds to ol v N
the regime of developed chaos represented by a one-ban 0 02 04 06 08 1 0 02 04 06 08 1
chaotic attractor. In the region 0.88y<1 we observe a ro- X x

bust regime of complete synchronization. As the coupling G, 1. Breaking of complete chaotic synchronization in the
parameter decreases, 03y<0.38, the synchronization of system(2) and (3) for different coupling strength: bubbling phe-
chaos is no longer robust. Synchronous oscillations can bgomenon fory=0.36 without noiséa) and in the presence of weak
observed after a long transient process only in the systemoise (intensity ~0.000 01)(b); unsynchronous chaos fgr=0.05
without noise. The addition of an arbitrary small noise leadsc) and partial regularization of oscillations @t=0.14 (d).

to the bubbling behavior. The time seriesy represents long

intervals of the synchronous behavior that are intermitted b&ero at zero coupling. In the presence of small noise

rf‘~0.000 01) a rapid decrease in the synchronization degree

the symmetric subspace. This behavior is illustrated in Fig - inifi | liefwith h l
1(a) and 1b) where the phase portraits of the attractor ar;beglns significantly earliefwith respect to the couplingas

. - : indicated by dot-dashed curve in Fig. 2. This process goes
shown b.Oth W'thOUt noisgFig. 1(a)] .and in the presence of more gradually than that in the noiseless system. A signifi-
small noise[Fig. 1(b)]. As the coupling parameter decreas.elscam difference in the degrees of synchronization for the sys-
further, the transversal Lyapunov exponent becomes POSItiVR, 1 \vith and without noise is observed only in this region up
at y=0.35. This leads to the blowout bifurcation after which
the chaotic synchronization is no longer observed in the sys-

tem. With decreasing coupling the attractor “inflates” and at

¥<0.05 the phase portrait looks like a square redibiy. o ”
1(0)]. L ; |
We use the proposed characteristicfor evaluating the 0.8 i i

destruction of complete synchronization. Figure 2 shows a - .
dependence of the degree of synchronization on the coupling o}~ i
in the systen{2) and(3) without noise and in the presence of < | i
small noise added. In the noiseless system, the sharp decay =

of the synchronization degree begins immediately at the 041 |
point where the transversal Lyapunov exponent changes its |
sign. For illustration we plot the transversal Lyapunov expo- 0.2 -
nent as a function of the coupling parameter and two dotted o .
lines (horizontal and verticalthe crossing of which indicates 0.04229%°.958° - ]
the point where the exponent passes through its zero value. It l l | Ny

is seen that the degree of synchronization sharply drops from 0.0 0.1 02 03 04 035
u=1aty=0.35tou=0.15 aty=0.3. Then, as parameter v

decreases further, the degree of synchronization slowly de- |G 2. pependences of the degree of chaotic synchronization
creases tqu=0.05 aty=0.2. This region corresponds to the (gash-dotted and solid curves for noisy and noiseless systems, re-
bubbling phenomenon. The local increaseguofit y~0.151is  spectively, and symbols[” and “ O for the system with signal
related to a more regular structure of the attractor representefistortions and the transversal Lyapunov exponent on the coupling
in Fig. 1(d). After this the degree of synchronization tends tofor the master-slave system.
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to y=0.34. This difference indicates the bubbling processhe study of generalized synchronization of chaos whgn
caused by external noise. In other regions of the coupling=f(x,) with f being a deterministic function.
parameter the values qf are practically the same in both ~ Our investigations have demonstrated that the proposed
casedqFig. 2). Thus, the degree of synchronization is signifi- measure of quantity of synchronization is sensitive to break-
cantly affected by noise only in regions where chaos syning of complete chaotic synchronization. The degree of syn-
chronization is nonrobust. chronization is exactly equal to 1 in the case of totally syn-
The proposed characteristic of synchronization is stablehronized oscillators and it is close to 0 when oscillations are
not only to a weak noise but to a small nonlinear distortionunsynchronous at a very small coupling. This quantity is
of signals. To illustrate this statement, we modify the timestable with respect to the influence of weak ndesecept the
series that is used to calculate the degree of synchronizatioregion with bubbling behavigrand nonlinear distortion of
by adding a nonlinear term the signal being studied.

y—y+oy?,

where§ is a small parameter. The results of calculations for
the modified realizations witlh=0.05 andé=0.2 are shown

in Fig. 2 (they are indicated by circles and squares, respec- The phenomenon of phase synchronization is another type
tively). As it is seen, the degree of synchronization found orof chaotic synchronization that attracts the interest of many

the changed signal does not practically differ from the initialresearchers and has a great fundamental and applied signifi-
undistorted case. The invariance with respect to nonlineacance. We test our method on a well-known system that dem-
distortions enables us to apply the proposed characteristic tnstrates phase synchronization of chaos: the Rossler oscil-

Ill. EVALUATING THE DEGREE OF PHASE
SYNCHRONIZATION OF CHAOS
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FIG. 4. Dependence of the degree of phase chaotic synchroni-
zationu on ) for the Rossler systeifa) 1.0066< Q) < 1.0689(main
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Q
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resonance)~ wg), (b) 0.5174<0<0.5188(resonance 2~ w),
(c) 2.0625<()<2.0801(resonancé)~2w).

lator with an external harmonic force:

X

Herex,y,z are dynamical variables,, b, andc are control-
ling parametersA and () are the amplitude and the fre-

—y—z+Acos(t,
y=x+ay,

z=b+z(x—c).

(4)
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FIG. 5. Phase portraits of the systef): (a) (2=1.061, A
=0.5,(b) =1.036,A=0.5.

=0.15p=0.15¢=10. For certain values of the force ampli-
tude and frequency the systd#) demonstrates the phenom-
enon of phase synchronization between the chaotic dynamics
of the oscillator and the periodic external foridet—18.

The phase synchronization is defined as locking of the
instantaneous phase of oscillations of the synchronized sys-
tem by the phase of the external force. The condition for full
phase synchronization on the basic frequency reads

®

In this case the basic frequency in the spectrum of the stud-
ied signal and the frequency of the external force are close to
each other. In the case of synchronization on subharmonics
this condition is as follows:

| p1— o| <const.

(6)

In expressiong5) and (6) ¢, and ¢, are the instantaneous
phases, andh and m are integer numbers. In the case of
partial phase synchronization both conditidBsand (6) are
no longer valid and the phase difference of the phases tends
to infinity with time. Nevertheless, in this case the phase
locking exists during very long time intervals between which
rapid skips of the phase difference are observed.

We investigate the syster#) in a wide region of the
external force frequency foA=0.5. Figure 8 demon-
strates the dependence of the synchronization degree

In¢g,—mde,|<const.

100 T
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80 :
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FIG. 6. Temporal dependences of the phase differenge (

qguency of the external force, respectively. We have chosen a ¢,,,,,) for A=0.5, and(i) Q=1.0264,(ii) Q=1.071, (ii) O

chaotic regime and fixed the parameters as folloavs

=1.082.
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Comparing complete and phase synchronization of chaos
nance character with several peaks. The maximal peak cowe find that the first case is characterized by a significantly
responds to the main resonance, which is located on the badarger degree of synchronization. This is obvious since com-
frequencywy=1.061 in the spectrum of the Rossler oscilla- plete synchronization means correlations between amplitudes
tor [Fig. 3(b)]. This peak indicates the region of phase syn-and phases of signals whereas phase synchronization takes
chronization(1:1) wheren=m=1 [see Eq(6)]. Figure 4a) into account only phase dynamics. Hence, full phase syn-
shows this region in a larger scale. The frequency intervathronization is characterized by the synchronization degree
corresponding to the full phase synchronization (1.0061being significantly less than 1. From this point of view, we
< <1.0689) is bounded by the dotted lines. The largestan consider phase synchronization as an example of par-
value of the degree of synchronizatiorgis=0.519 while the tially synchronous oscillations.
minimal value is about 0.15. The value of the synchroniza-
tion degree depends on an oscillatory regime in the system
(4) and it is significantly larger for more regular oscillations
in the windows of periodicity. For example, the sharp peak of We have proposed the characteristic of chaotic synchroni-
w at frequency() = 1.061 refers to the period -16 limit cycle zation that can be applied to different types of synchronous
[Fig. 5@]. This peak is observed near the local maximumbehavior. We have tested it on examples of complete and
n=0.34 at the basic frequendy= w,. The other values of phase synchronization of chaos. In the first case the degree of
w in this region belong to the interv@D.15;0.34 and are  synchronization is exactly equal to 1 for totally synchronized
related to chaotic synchronous oscillatigfsgy. 5(b)]. oscillations and is reduced when synchronization is broken.

Depending on the frequency of the external force the osin the bubbling region the degrees of synchronization with-
cillations in the system can be totally synchronizedrve(i) ~ out and in the presence of small noise are very different. This
in Fig. 6], partially synchronizedlcurve (ii)], or unsynchro- behavior reflects a nonrobu@r “weak”) character of syn-
nized[curve (iii)]. Starting from the region of partial phase chronization. In the other parameter regions weak noise does
synchronization we observe that when the system parametaot practically influence on the degree of synchronization.
changes in one direction, the time intervals of phase lockingVe have demonstrated that its value is also invariant to a
are gradually increased to infinity, while they are graduallysmall distortion of the signal.
decreased to zero as the parameter is varied in the opposite In the case of phase synchronization the suggested mea-
direction. This leads to a gradual change of the degree dfure indicates regions of synchronization with different ratio-
synchronization from the values in the interval 01  nal numbers. The degree of synchronization is significantly
<0.34 for totally synchronized oscillations to 0:0L  less than that for complete synchronization. It depends on
<0.15 for partially synchronized and then to almost zerowhich kind of an oscillatory regime is observed in the oscil-
value for unsynchronized ones. lator. Higher resonances have smaller levels of synchroniza-

The other peaks presented in Figaj3reflect synchroni- tion than the main one.
zation on harmonics. For example, Figlby represents a
peak of synch_ronlzgtlon Qt 1:2 when the conditipp, ACKNOWLEDGMENTS
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